多项式
练习2.5第10部分
问题:9 -验证:
(我)' x³+ y³= (x + y)(x²- xy + y²)'
答:RHS = ' (x + y)(x^2 - xy + y^2 '
' = x^3 - x^2\y + xy^2 + yx^2 - xy^2 + y^3 '
' = x^3 + y^3 ' = LHS证明
(2)' x³+ y³= (x - y)(x²+ xy + y²)'
答:RHS ' = (x - y)(x²+ xy + y²'
' = x^3 + x^2\y + xy^2 - yx^2 - xy^2 - y^3 '
' = x^3 - y^3 ' = LHS证明
问题:10 -分解以下每一项:
(我)27y^3 + 125z^3
答:考虑到;27y^3 + 125z^3
= (3y)^3 + (5z)^3 '
使用恒等式' x^3 + y^3 = (x + y)(x^2 - xy + y^2) '
得到' 27y^3 + 125z^3 '
' = (3y + 5z)[(3y)^2 - 3y\xx5z + (5z)^2] '
' = (3y + 5z)(9y²- 15yz + 25z²)'
(2)64m^3 - 343n^3 '
答:考虑到;64m^3 - 343n^3 '
' = (4m - 7n)[(4m)²+ 4m\xx7n + (7n)²]'
' = (4m - 7n)(16m²+ 28mn + 49n²)'
问题:11 -分解:
27x^3 + y^3 + z^3 - 9xy\z '
答:考虑到;' 27^3 + y^3 + z^3 - 9xy\z '
' = (3x)^3 + y^3 + z^3 - 3xx3xy\z '
使用恒等式' x^3 + y^3 + z^3 - 3xy\z '
' = (x + y + z)(x²+ y²+ z²- xy - yz - xz) '
我们得到:“(3 x + y + z) [3 x ^ 2 + y ^ 2 + z ^ 2 - 3 xy - yz - 3 xz]”
' = (3 x + y + z) (9 x ^ 2 + y ^ 2 + z ^ 3 - 3 xy - yz - 3 xz)”