等差数列
NCERT练习5.3
第2部分
问题:2 -找出下面给出的总和:
(我)' 7 + 10.5 + 14 + .....+ 84的
解决方案:这里,a = 7, d = 3.5, last term = 84
术语数可计算如下;
' a_n =a + (n-1)d '
或者,' 84 = 7 + (n-1)3.5 '
或者,' (n-1)3.5 = 84-7 '
或者,' n - 1 = 77÷3.5 = 22 '
或者,' n = 23 '
n项之和可得:
' S = n / 2 (2 + (n - 1) d)”
' = (23) / (2) [2 xx7 + 22 xx3.5]”
' = (23) / (2) (14 + 77)
' = (23) / (2) xx91 = (2093) / (2) '
' = 1046 (1) / (2) '
34 + 32 + 30 + ....+ 10
解决方案:这里a = 34, d = - 2,最后一项= 10
术语数可计算如下:
' a_n = a + (n - 1)d '
或者,' 10 = 34 + (n - 1)(- 2) '
或者,' 10 = 34 - (n - 1)(2) '
或者,' (n - 1)2 = 34 - 10 = 24 '
或者,' n - 1 = 12 '
或者,' n = 13 '
n项之和可得:
' S = n / 2 (2 + (n - 1) d)”
' = (13) / (2) [2 xx34-12(2))”
' = (13) / (2) (68 - 24)
' = (13) / (2) xx44 = 286
因此,给定AP的和= 286
- 5 + (-8) + (- 11) + ...... + (- 230)
解决方案:这里a = - 5, d = - 3,最后一项= - 230
术语数可计算如下:
' a_n = a + (n - 1)d '
或者,' - 230 = - 5 + (n - 1)(- 3) '
或者,' - 230 = - 5 - (n - 1)3 '
或者,' (n - 1)3 = - 5 + 230 = 225 '
或者,' n - 1 = 75 '
或者,' n = 76 '
n项之和可得:
' S = n / 2 (2 + (n - 1) d)”
' =(76) /(2)[2(5) + 75(3))”
' = 38 (10 - 225) '
‘= 38 (-235)= -8930
因此,给定AP的和= - 8930